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• Breakdown of Princeton Tasks

• Bidisperse drag formulation

• Simulation procedures

• Low Re results

• Moderate Re results

• Summary
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Connection to Roadmap

Princeton Tasks Roadmap
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1. Fundamental aspects of stress and flow fields in dense

particulate systems.

2. Definition of material properties on relevant scales, along with

efficient ways to represent properties in models and establish

standards for material property measurements.

3. Given the practical need for continuum modeling capability,

identify the inherent limitations and how to proceed forward, e.g.,

hybrid models that connect with finer scale models (DNS, DEM,
finite element, stochastic, etc.) for finer resolution.

4. Size-scaling and process control (particle / unit-op / processing

system) is critical to industrial applications.
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Connection to Roadmap

Princeton Tasks Roadmap

Task 2.2:

LBM/DTIBM simulations of flow 
through assemblies of binary 
particle mixtures where the 
two types of particles have 
non-zero relative velocities.
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Connection to Roadmap

Princeton Tasks Roadmap

Task 2.2:

LBM/DTIBM simulations of flow 
through assemblies of binary 
particle mixtures where the 
two types of particles have 
non-zero relative velocities.

Near-term:
• Develop drag relations that can 

handle particle size and density 
distributions; applicable over the 
entire range of solids volume 
fraction.

• Development of constitutive 
relations for continuum models from 
discrete models such as DEM or 
LBM.
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Connection to Roadmap

Princeton Tasks Roadmap

Task 2.2:

LBM/DTIBM simulations of flow 
through assemblies of binary 
particle mixtures where the 
two types of particles have 
non-zero relative velocities.

Near-term:
• Develop drag relations that can 

handle particle size and density 
distributions; applicable over the 
entire range of solids volume 
fraction.

• Development of constitutive 
relations for continuum models from 
discrete models such as DEM or 
LBM.

Mid-term:
• Consider the effect of lubrication 

forces in particle-particle 
interactions.
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Particle-particle 
drag

Total force 
experienced by 
particle type i

Pressure 
gradient

Fluid-particle 
drag force

fi = −φi∇p + fDi − fppdi

Fluid-particle drag vs. total force

4
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Bidisperse fluid-particle drag 
formulation: 

Particle-particle 
drag

Total force 
experienced by 
particle type i

Pressure 
gradient

Fluid-particle 
drag force

fi = −φi∇p + fDi − fppdi

fD1 = −β11∆U1 − β12∆U2

fD2 = −β21∆U1 − β22∆U2

Average fluid-particle drag 
per unit volume of 

suspension

Fluid-particle drag vs. total force

4
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Bidisperse drag formulation

fD1 = −β11∆U1 − β12∆U2

fD2 = −β21∆U1 − β22∆U2

Volume specific friction 
coefficient

λ - lubrication cutoff

r = λ

r

F

5
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Bidisperse drag formulation

fD1 = −β11∆U1 − β12∆U2

fD2 = −β21∆U1 − β22∆U2

Volume specific friction 
coefficient

low Re

moderate Re

λ - lubrication cutoff

r = λ

r

F

Fluctuating particle velocities found to be small contribution to the fluid-
particle drag force (Wylie and Koch, JFM (2003), vol. 480, pp. 95-118) 5

βij = βij(φi, φj , di, dj ,∆Ui,∆Uj , < u2
i >, < u2

j >, λ)
βij = βij(φi, φj , di, dj , λ)

βij = βij(φi, φj , di, dj ,∆Ui,∆Uj , λ)
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Simulation Procedures

Numerical Method:  Lattice Boltzmann

Fluid motion solved on a 3D cubic lattice 
with no slip boundary conditions

LBM References:
Ladd and Verberg, J. Stat. Phys. (2001), vol. 104, pp. 1191-1251
Yin and Sundaresan.  Ind. Eng. Chem. Res. (2009), vol. 48, pp. 227-241 6
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Simulation Procedures

• Generate initial configurations 
that satisfy binary hard sphere 
distribution.

• Assign particles with 
velocities, but do not update 
particle positions.  FROZEN 
SIMULATIONS (exact for 
Stokes flow, arguable for finite 
Re).

• Apply pressure gradient to 
enforce a net zero flow rate 
of fluid.

• Ensemble average multiple 
independent realizations.

• Solve for βij

Numerical Method:  Lattice Boltzmann

Fluid motion solved on a 3D cubic lattice 
with no slip boundary conditions

LBM References:
Ladd and Verberg, J. Stat. Phys. (2001), vol. 104, pp. 1191-1251
Yin and Sundaresan.  Ind. Eng. Chem. Res. (2009), vol. 48, pp. 227-241 6
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Low Re bidisperse systems

fD1 = −β11∆U1 − β12∆U2

fD2 = −β21∆U1 − β22∆U2

Yin and Sundaresan.  Ind. Eng. Chem. Res. (2009), vol. 48, pp. 227-241 7
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Low Re bidisperse systems
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β11 + β12 = β1 = −fD1−fixed

∆U

β21 + β22 = β2 = −fD2−fixed

∆U

Recovery of fixed bed drag 
when ΔU1 = ΔU2
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β21 + β22 = β2 = −fD2−fixed
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(
β11 β12

β21 β22
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Low Re bidisperse systems

fD1 = −β11∆U1 − β12∆U2

fD2 = −β21∆U1 − β22∆U2
β12 = β21

β11 + β12 = β1 = −fD1−fixed

∆U

β21 + β22 = β2 = −fD2−fixed

∆U

(
β11 β12

β21 β22

)
=

(
β1 − β12 β12

β12 β2 − β12

)

Recovery of fixed bed drag 
when ΔU1 = ΔU2

One free parameter

ΔU1 = ΔU2 (‘fixed bed’) simulations:  Extract β1 and β2

ΔU1 ≠ ΔU2 (‘moving suspension’) simulations:  Extract β12

Yin and Sundaresan.  Ind. Eng. Chem. Res. (2009), vol. 48, pp. 227-241 7
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Low Re Bidisperse fixed beds

Definitions follow van der Hoef et al., JFM (2005), vol. 528, pp. 233-258

Sauter mean diameter

< d >=
n∑

i=1

nid3
i

nid2
i

Dimensionless size ratio

yi =
di

< d >

βi =
18µφi(1− φ)

d2
i

F ∗
Di−fixed(φ, yi)

Fixed bed friction coefficient

Dimensionless drag force on particle of 
type i in a bidisperse fixed bed

8
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Drag law for bidisperse fixed beds

Yin and Sundaresan, AIChE J., accepted (2009)
van der Hoef et. al., JFM, (2005), vol. 528, pp. 233-254 

 Refinement of original 
correction proposed by 

van der Hoef et al.

9

F ∗
D−fixed =

10φ

(1− φ)2
+ (1− φ)2(1 + 1.5

√
φ)

F ∗
Di−fixed =

1
1− φ

+
(

F ∗
D−fixed −

1
1− φ

)
(ayi + (1− a)y2

i )

Drag in a 
bidisperse fixed 

bed

Drag in a 
monodisperse 

fixed bed

a = 1− 2.660φ + 9.096φ2 − 11.338φ3
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Drag law for bidisperse fixed beds

dP

dx
=

18φµ∆U

< d >2

(
F ∗

D−fixed +
1

1− φ

(
σIσIII

σ2
II

− 1
)) Integrating over a continuous size 

distribution we can obtain the 
pressure drop through a 
polydisperse fixed bed

σI, σII, and σIII are first, second, and third order moments of a 
particle size distribution

Yin and Sundaresan, AIChE J., accepted (2009)
van der Hoef et. al., JFM, (2005), vol. 528, pp. 233-254 

 Refinement of original 
correction proposed by 
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9
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√
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1
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Low Re Bidisperse Fixed beds

Horizontal Axis:

Vertical Axis:
F ∗

Di−fixed

F ∗
D−fixed

yi

Average error:  3.9%
Max error:  9.4%

10
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Low Re bidisperse suspensions

Particle-particle interaction proportional to the probability of 
mutual contact

β12

φ1φ2
= −2α

(
β1
φ1

β2
φ2

β1
φ1

+ β2
φ2

)
Harmonic mean

Yin and Sundaresan, AIChE J., accepted (2009)

fD1 = −β1∆U1 − β12 (∆U2 −∆U1)
fD2 = −β2∆U2 − β12 (∆U1 −∆U2)

11
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Low Re Bidisperse suspensions
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β∗1
φ1

+ β∗2
φ2

)
Horizontal Axis:

Vertical Axis:

− β∗
12

φ1φ2

β∗
12 =

β12 < d >2

µ

β∗
1 =

β1 < d >2

µ
β∗

2 =
β2 < d >2

µ

α

(
λ

d1

)
= 1.313log10

(
d1

λ

)
− 1.249

       is a linear function of the harmonic mean of        andβ12
β1

φ1

β2

φ2

12Yin and Sundaresan, AIChE J., accepted (2009)
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Simulations at finite Re

Frozen suspension at finite Re Moving suspension at finite Re

• Inertial lag prevents fluid from 
adapting to particle motion 

instantaneously

13
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Simulation procedure at finite Re

Must extrapolate frozen simulations to infinite resolution to get an accurate 
measure of the drag force in a moving suspension. 

D
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−900
Re = 20   Ret = 2

 

 

Moving

Frozen

1
r2
h

van der Hoef et al., JFM 
(2005), vol. 528, pp. 233-258 
(extrapolation procedure)

Average pore radius

rh =
d(1− φ)

6φ

14
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Simulation procedure at finite Re
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Moving

Frozen

1
r2
h

van der Hoef et al., JFM 
(2005), vol. 528, pp. 233-258 
(extrapolation procedure)

less than 1 % difference

Average pore radius

rh =
d(1− φ)

6φ
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Drag law for finite Re 

fD1 = −β1∆U1 − β12 (∆U2 −∆U1)
fD2 = −β2∆U2 − β12 (∆U1 −∆U2)

β12

φ1φ2
= −2α

(
β1
φ1

β2
φ2

β1
φ1

+ β2
φ2

)
α

(
λ

d1

)
= 1.313log10

(
d1

λ

)
− 1.249

Fluid-particle drag relation for inertial, bidisperse, gas-solid 

suspensions in relative motion 

 
The fluid-particle drag in a bidisperse suspension in the high Stokes number limit 

can be expressed in the following way: 

 

1 11 1 12

2 21 1 22
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Finite Re bidisperse suspension data

Holloway,  Yin and Sundaresan, (in preparation)

Remix range:  0-40
Φ1: Φ2 range: 1-3
d1:d2 range:  1-2

Re1:Re2 range: -1:3
Average error:  5%
Max error:  25%

Horizontal axis:  Simulated fDi*  
Vertical axis:  Predicted fDi*
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Looking ahead

• Combine LBM results at moderate Re together with 
IBM results from Subramaniam group at higher Re. 

• Perform freely evolving bidisperse simulations to 
investigate particle-particle collisional interactions in 
sedimenting systems.
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Summary

• Fluid-particle drag relation developed that accurately 
predicts fluid-particle drag in Stokesian suspensions with 
particle-particle relative motion and size differences.

• Drag relation extended to account for moderate fluid 
inertia in bidisperse suspension flows.
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